Market-Based Reinforcement Learning in Partially Observable Worlds

نویسندگان

  • Ivo Kwee
  • Marcus Hutter
  • Jürgen Schmidhuber
چکیده

Unlike traditional reinforcement learning (RL), market-based RL is in principle applicable to worlds described by partially observable Markov Decision Processes (POMDPs), where an agent needs to learn short-term memories of relevant previous events in order to execute optimal actions. Most previous work, however, has focused on reactive settings (MDPs) instead of POMDPs. Here we reimplement a recent approach to market-based RL and for the first time evaluate it in a toy POMDP setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Memory-Based Learning Schemes for Robot Navigation in Discrete Grid-Worlds with Partial Observability

Abstract In this paper we tackle the problem of robot navigation in discrete grid-worlds using memory-based learning schemes. Different memory-based approaches are tested for navigating an agent across a discrete but partially observable world, and the significance of memory structure is examined. Further, the effects of additional memory hierarchies and multi-level learning frameworks are anal...

متن کامل

Could Active Perception Aid Navigation of Partially Observable Grid Worlds?

Due to the unavoidable fact that a robot’s sensors will be limited in some manner, it is entirely possible that it can find itself unable to distinguish between differing states of the world (the world is in effect partially observable). If reinforcement learning is used to train the robot, then this confounding of states can have a serious effect on its ability to learn optimal and stable poli...

متن کامل

Importance sampling for reinforcement learning with multiple objectives

This thesis considers three complications that arise from applying reinforcement learning to a real-world application. In the process of using reinforcement learning to build an adaptive electronic market-maker, we find the sparsity of data, the partial observability of the domain, and the multiple objectives of the agent to cause serious problems for existing reinforcement learning algorithms....

متن کامل

Monte Carlo Bayesian Reinforcement Learning

Bayesian reinforcement learning (BRL) encodes prior knowledge of the world in a model and represents uncertainty in model parameters by maintaining a probability distribution over them. This paper presents Monte Carlo BRL (MC-BRL), a simple and general approach to BRL. MC-BRL samples a priori a finite set of hypotheses for the model parameter values and forms a discrete partially observable Mar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001